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The penetration of a magnetic field into a cylindrical plasma of a density that varies both radially
and axially is studied. The magnetic field penetrates rapidly due to the Hall field, along constant
nr? lines (n is the dimensionless plasma density and 7 is the dimensionless radial coordinate).
For a plasma that conducts between two cylindrical electrodes, it is shown that there is magnetic
field penetration for both positive and negative polarity cases as long as there is penetration
along the electrodes. The magnetic field evolution is found, analytically and numerically, for
different time behaviors of the magnetic field at the boundaries. Ion velocities are also calculated.

I. INTRODUCTION

Fast magnetic field penetration into a plasma due to
the Hall field has been the subject of many recent studies.
In particular, it has been shown that the penetration can
result from a density gradient in a planar geometry,’ or
from a magnetic field curvature in cylindrical geometry.?
In order for the fast magnetic field penetration to be the
dominant mechanism, plasma pushing by the magnetic
field has to be negligible. This occurs when the ion speed is
smaller than the field penetration speed (defined later in
the text), or equivalently L <c/w,; (L is the length scale of
the density gradient or the radius of curvature of the mag-
netic field and ¢/w), is the ion skin depth).3 On the other
hand, if the ion speed is larger than the field penetration
speed, or equivalently L>c/w,;, the plasma pushing is
dominant.* Both cases, the density gradient case and the
cylindrical magnetic field curvature case lead to similar
equations for the evolution of the magnetic field, when
equivalent parameters are identified. From the assumption
of quasineutrality, it is required that L > c/w,, (c/w), is the
electron skin depth). The assumptions of quasineutrality
on one hand and negligible ion motion on the other hand
require the relevant scale length of the model to satisfy
c/Wpe< L <c/wp;.

In the previously mentioned cases, the resistivity is
assumed small, so that the magnetic field diffusion is much
slower than the magnetic field penetration. This is the case
when 7m/ny<l (7 is the collisional resistivity and
nu=B/N,. is the “Hall resistivity,” B is the magnetic
field, N is the plasma density, —e is the electron charge,
and c is the light velocity in vacuum). The magnetic field
penetrates in a direction perpendicular to the density gra-
dient in the planar case or in the axial direction (perpen-
dicular to the radial direction) in the cylindrical case. The
penetration is in the form of a shock wave, where the shock
structure depends on the resistivity. The velocity of prop-
agation and the amount of dissipation, however, do not
depend on the resistivity.” In addition to the Hall-induced
penetration in which the resistivity determines the shock
structurt:-.,l"3'5“9 recent studies have treated the penetration
in the case in which the resistivity is very small and the
electron inertia is dominant.!%13
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Motivated by the question of the magnetic field pene-
tration into the plasma in the plasma opening switch
(POS),"*15 we concentrate on the cylindrical case. We
study the penetration of the magnetic field into a hollow
cylindrical plasma that fills the gap between two concentric
cylindrical conductors at some axial location. In our pre-
vious studies we assumed that the plasma density was uni-
form. We showed that if the cathode is at the inner con-
ductor (negative polarity), the magnetic field penctrates
axially into the plasma from the vacuum. If the cathode is
at the outer conductor (positive polarity), there is no field
penetration. Moreover, if the plasma is initially magne-
tized, then the field is spontaneously expelled. In both
cases, since the density is uniform, the evolution of the
magnetic field near the electrodes does not affect much the
evolution of the magnetic field in the bulk of the plasma.’

In the present paper, we assume that the (dimension-
less) plasma density n is not uniform. The density distri-
bution is assumed to be realistic and to decrease axially
toward the vacuum-plasma boundary. We also allow a
radial density variation. We show that the magnetic field
evolution is along constant n7? lines. The uniform density
case is therefore only a special case, in which the constant
n#? lines are parallel to the axial direction. We show that in
contrast to the uniform density cylindrical case, in the non-
uniform density cylindrical case the magnetic field pene-
trates for both switch polarities, as long as there is fast
magnetic field penetration along the electrodes. This is be-
cause the constant n/? lines are not parallel to the axial
direction, but rather end at the neighborhood of the elec-
trodes. If the penetration along the anode is faster (as in
our two-dimensional studyg), the major penetration of the
magnetic field for both polarities occurs from the anode. In
a recent paper we have described qualitatively the penetra-
tion of the magnetic field into a plasma of a realistic density
profile.'

We assume that the resistivity is small enough so that
the dominant process is the Hall-induced penetration along
the nr? contour lines. On the other hand, the resistivity is
assumed to be not too small, so that the fluid description is
still correct and the electron inertia can be neglected. By
neglecting the resistive term, we obtain a hyperbolic equa-
tion that is solved by calculating its characteristics. The
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solutions that we find have shock discontinuities and also
discontinuities at the plasma boundaries. Within our model
the discontinuities can be removed by adding finite resis-
tivity. In reality, there could be non-neutral sheaths that
remove the discontinuities.'” The n7* contour lines are the
projections of the characteristics onto the (»z) plane (z is
the dimensionless axial coordinate). Since the 7 contour
lines intersect the electrodes, the evolution of the magnetic
field in the neighborhood of the electrodes is crucial to the
evolution in the bulk of the plasma. A correct treatment of
the evolution near the electrodes involves an appropriate
treatment of the non-neutral sheaths. Elaborate models
were developed for that purpose. Common to these modeis
is the prediction of the fast penetration of the magnetic
field along the cathode!*'>'™1% or along the anode.?°
Thus, here we assume that the magnetic field does pene-
trate into the plasma along the electrodes by some mech-
anism.

We calculate analytically the penetration of the mag-
netic field for various time behaviors of the magnetic field
at the plasma boundaries. First, we consider a magnetic
field that is fast rising to a constant value (step function in
time). We study the time evolution of the magnetic field
and the steady state that is reached. We then study the case
in which the magnetic field is linearly rising in time. Fi-
nally, a linearly rising magnetic field that is followed by a
decreasing magnetic field is considered. Examples are given
for both polarities. Numerical results are given for negative
polarity and finite resistivity. In addition, we calculate the
ion velocities that result from the Hall electric field, for
such parameters that the ion displacement is small, consis-
tent with the assumptions of the model. Also, the velocity
of the wave propagation is shown to be greater than the
Alfvén velocity V,, satisfying the requirement3 for the
plasma pushing to be negligible. All the examples given in
this paper are relevant only for the short conduction time
POS.

In Sec. II the model is presented and the evolution
along constant 77* density lines is shown. In Sec. ITI the
uniform density case and the nonuniform density case are
compared briefly. In Sec. IV a realistic density profile is
described. Analytical solutions for various time behaviors
of the magnetic field at the boundaries are given in Sec. V.
In Sec. VI the ion velocities are calculated under the as-
sumption that they are accelerated by an electric field that
results mainly from the Hall term. Finally, Sec. VII is
dedicated to conclusions. Some calculations are left for an
appendix.

Ii. THE MODEL

We assume that the main process is the fast magnetic
field penetration into the plasma due to the Hall field and
that the ion motion can be neglected. We also assume that
the electron inertia and the displacement current can be
neglected, and that the plasma is cold. Elsewhere,® the
effect of electron heating is studied for a particular case of
our model. The equations describing our model are Fara-
day’s law,
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1
VXE=—-d/B,

Ampére’s law,
VXB=(4n/c)d,

and the momentum equation of the electron (Ohm’s law),
E=nJ+(IJXB)/eNc,

where E and B are the electric and magnetic fields and J is
the current density, We also assumed that the scale length
of the density gradient and the radius are smaller than
¢/w,;, otherwise the main process is plasma pushing by the
magnetic field. In this case the ions barely move and
= —eNV, and 3N =0 (V, is the electron flow velocity).

In order to also neglect the electron inertia we assumed
that the plasma is collisional encugh.

The geometry assumed in our model is that of a POS.
A plasma fills a space of axial length @ between two con-
centric cylindrical electrodes. The outer electrode has ra-
dius r, and the inner electrode has radius r;. A magnetic
field is applied in the vacuum on one side of the plasma
(the generator side). The magnetic field in the vacuum on
the other side of the plasma (the load side) is assumed to
remain zero. The magnetic field in the vacuum on the gen-
erator side at the inner conductor is B;. We assume also
that B= B6 and that derivatives with respect to 8 are zero.
We choose the generator to be in the negative z direction.
In that case, for negative polarity B <0, while for positive
polarity B> 0.

Under these assumptions, after defining dimensionless
parameters:

R Z N RB
rs—; z=—; n=-—; b=——,
7; a ng r:B;
¢B,T enycm
t=——, 7'= )
4rngea B;
we obtain
5= (L 213, L0 b 5 1
,b—i;z,—krrr,b—r-n—;,, (1

where {w,[} =3w 31— 3w d,] (Poisson brackets) and rgis
the maximum density in the plasma. We define new or-
thogonal coordinates £ and w, where

E=nr, (2)
and w is such that V£-Vo=0. The last condition together
with delz(r),rl/dr=(8w/3z)(dz/dr) +dw/Br=0 define
constant « lines for » and z, satisfying

dz df

T (3)

dr 44
We assume that n’a/r;<€1; therefore we neglect the first

term on the right-hand side of Eq. (1) and we obtain an
hyperbolic equation for the magnetic field:

db=—G(£,w,b)d,b, (4)
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where G(&w,b)=(b/Pn*){£,w}. The magnetic field is
constant along the characteristic (¢,w;), with the following

£ +h fiald
equation for the magnetic field and the characteristic:

b[t,co,(t),g] =boEb[to,w1(fo),§],

do;

?—G(nghbo) (5)
An initial by value at one point of the n*=§&, curve, and at
initial wy=0;(#y), propagates with the velocity G (£y,m,b,)
along the constant £, curve.

Kulsrud er al.?! have pointed out that since b/nr* is
constant along an electron trajectory, a steady-state cur-
rent distribution is usually impossible. Fruchtman®® has
shown that as a result the magnetic field evolves in time, so
that b/nr* remains constant along the trajectory of the
electron. The present analysis shows that the magnetic field
evolves along the n7? lines [Eq. (5)]. During this evolution
the electrons move across the n7? contour lines. If a steady
state is reached as a result of the evolution, the magnetic
field b is constant along n#* contour lines and the current
and the electron trajectories are parallel to these lines.

The velocity of propagation G(&,»,b) along the char-
acteristic is proportional to the magnetic field. Reversing
the sign of the magnetic field (which corresponds to re-
versing the polarity in the POS configuration) reverses the
direction of propagation along the constant § curve.

Knowing that the evolution is along constant § lines,
let us assume that at one point of the &, curve
blty,E0,0(80)]=by and w,(t)=olz;(¢),r,(2)], where
npt=£,. Neglecting the resistive term in Eq. (1), we find
that the propagation of b is along constant n7” lines, where
the characteristics z;(¢) and r;(¢) satisfy

dZI b 1 6
E;__rl Oar;l;, (6)
dr, b 1

_d—t=rl Oaz?;’ (7)

where n(z;,r))rp=£,.

Let us now assume that the field b= b, penetrates in a
region, where it has a different value b=5_, so that a
discontinuity is formed. The velocity of propagation of the
discontinuity can be found by rewriting Eq. (4) as
3.R +38,5=0, where S=5/2 and R=5*/G(£,0,b), and by
integrating the new equation with respect to @ in a region
that contains the discontinuity.”® The weak solution con-
serves the magnetic field flux as it should rather than the
magnetic field energy. The equation for the location of the
discontinuity is

dwd (bg—b_) G(§,0, b) 8

a2 b (®)
If b_ =0, the discontinuity propagates at half the velocity
of the magnetic field, not at the discontinuity.

The solution of the hyperbolic equation (4), is fully
determined by only part of the physical boundary condi-
tions (at one point of the constant £ curve). When the
complete boundary conditions are specified, the mathemat-
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ical problem is over determined, and a discontinuity is
formed at one of the two ends of the constant £ curve. As

ig aftan tha raca the diccantinnity ie removed hy the racic.
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tive term. With finite resistivity the equation is not hyper-
bolic anymore, and allows to specify the boundary condi-
tions on both sides of & The discontinuities are smoothed,
permitting continuous transition from one value of b to
another. Mathematically, the evolution of the magnetic
field is not purely along the n/* lines. When the resistive
term is included, the shock is continuous and its structure
depends on the resistivity. The velocity of the shock prop-
agation is independent of the resistivity, as long as
n'a/r;< 1. Therefore we have neglected the resistive term.
The presence of finite resistivity, even if its value is small,
is crucial for this shock penetration of the magnetic field.
As we mentioned before, in the regions in which the resis-
tivity could be neglected (outside the shock layer), b/ nr’ is
constant along the electron trajectories, and the frozen-in
law is satisfied. Inside the shock layer, however, the non-
zero resistivity is crucial, b/n7* is not constant along the
electron trajectories, the frozen-in law is not satisfied,?? and
there is a large flux penetration.

lil. PENETRATION OF MAGNETIC FIELD INTO
UNIFORM AND NONUNIFORM CYLINDRICAL
PLASMAS

A. The case of plasma of uniform density

When the density is uniform, the constant nr? curves
are constant » curves. This case has been solved in
detail,>*® where two-dimensional geometry including con-
ducting electrodes at the boundaries, electron heating, and
ion motion have been taken into account. It has been
shown there that the evolution at the bulk of the plasma is
not affected much by the boundary conditions, and that
near the anode (when it is made of a conducting surface)
the magnetic field penetration is fast. The magnetic field
evolution is very different for the two switch polarities. In
the negative polarity case the magnetic field propagates
from the vacuum on the generator side toward the load
side, in the form of a shock wave of velocity ¢ B;r/4mnre.
The width of the shock was shown to be cennr’/By;,
which should be larger than c¢/w,, 6

When the polarity is positive, the magnetic field prop-
agates from the load side to the generator side. Therefore,
if the plasma is initially unmagnetized, it will remain so.
Furthermore, if the plasma is initially magnetized, there
will be magnetic field expulsion.’

B. The case of plasma of nonuniform density

When the plasma is not uniform, constant n/* lines
intersect the boundaries of the plasma with the electrodes
and not only the boundaries of the plasma with the vac-
uum. The difference between the magnetic field evolution
for the two switch polarities is not as drastic as it is when
the plasma is uniform. If there is magnetic field penetration
along the electrodes, there is also magnetic field penetra-
tion into the plasma. A penetration of the magnetic field
along the cathode and the generation of a cathode sheath
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FIG. 1. Numerically calculated magnetic field evolution in a plasma of
nonuniform density when the polarity is negative. (a) Contour lines of
s n=0.1+ (2.45z)° for z<0.4, n=1 for z>0.4; (b) contour lines of b,
t=0.2; (¢) t=0.4; and (d) 1=0.8. The magnetic field at the boundaries is
a step function in time and 7'a/r;=0.001. At the cathode, §,56=0.

shown to be
14,15,17-

were important for the POS
operation. 19 There will also be magnetic field pene-
tration along the anode, if the anode is a conductor.” We,
therefore, assume that the magnetic field penetrates along
both electrodes. As we will show here, the magnetic field
penetration along the anode is more important for the field
penetration into the bulk of the plasma.

In Fig. 1(a), the nr* contour lines are shown for a
particular density profile. In Figs. 1(b)-1(d), the magnetic
field penetration in a negative polarity case is shown for the
density profile that is shown in Fig. 1(a). Near the plasma
boundary on the left side, where the magnetic field is ap-
plied (the generator side), there is a region of a nonuni-
form density. To the right of that region the plasma density
is uniform. A magnetic field =1 is applied at =0 on the
left boundary. The magnetic field at the boundary on the
right is assumed zero. We assume an infinitely fast pene-
tration of the magnetic field along the anode. At the cath-
ode, on the other hand, the radial derivative of the mag-
netic field is assumed zero. This is a numerical solution
that also includes resistivity. The boundary condition at
the cathode makes the resistive solution different from the
ponresistive solution that propagates along the constant
nr* characteristic. Far from the cathode the evolution is
along constant 77 lines, and the solution becomes the fa-
miliar one in the uniform region.

The “S-shaped” structure in Fig. 1(b) is due to the
nonmonotonic-in-z radial velocity of the field propagation,
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which is a result of a nonmonotonic-in-z dependence on
(d/dz) (1/n) for the particular density profile of Fig. 1(a).
In a realistic density profile at the plasma—vacuum bound-
ary, the dependence is usually monotonic, and the *S-
shaped” structure is not expected to appear. However,
such a “S-shaped” structure is a true physical phenomenon
that could occur in reality whenever a region of nonuni-
form density exists in the plasma between two regions of a
more uniform density.

V. REALISTIC DENSITY PROFILE

We assume now a realistic density profile of the form

n=f(z)r" (%)

where f(z) is assumed to decrease toward the vacuum—
plasma boundaries. The density profile in actual experi-
ments depends on the preparation of the plasma. We
choose as a particular example a trapezoidlike plasma in-
jection from the cylinder axis, and consequently we assume
that —2<a<—1. From Eqgs. (2) and (3), we obtain

E=f(2)r"?,
Iy 7

w= f df/dz  2(a+2)"
From Egs. (6) and (7) we find that the propagation along
constant £ is given by

dZ[ bo(a+2)

d~ £

dr, bO(df/dZ)

e Y

(10)

(11)

Note that along constants £, dz;/dt is also constant. This is
a result of the particular choice of the density radial de-
pendence, and simplifies the calculations considerably. We
now assume

fy=[1+4(e—1)(z—D’]. (12)

There is a discontinuity in the density at the vacuum-
plasma boundary, when taking €540, which is only an ap-
proximation for the density profile. Also note that f (z=%
=1.

Suppose that at the boundaries (either with the elec-
trodes or with the vacuum) a magnetic field b=5y(£) is
specified, which propagates along constant £. Equations
(10) and (11) are integrated to give

bola+2)t
z/(2) =OT+ZO, (13a)
where for positive polarity,
E—1 1
Zy= — Z(—E—_T)—{—O.S, for z< =,
\,drg*‘ —! 05 :

Zp= m—i— .5, for Z>—2-. (13b)
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For negative polarity the values of z, for z> } and z <3 are interchanged. When zy becomes greater than unity or less than
zero in Eq. (13b), the constant n/? lines end at the vacuum—plasma boundaries, and z, is unity or zero, respectively. The

evolution in time of r;(¢) is

§
0= (1—[—(2bo/§) Vi—e(a+2)sgn(z—2)t+v]?

where for positive polarity,

v=—J1—£, for z<},

and

Y= \}1—§/r0a+7, for z>1.

Again, for negative polarity the values of v for z> 3 and
z<j are interchanged. Equation (14) follows the relation

n[r (2),z;(1)]r5 (1) =E.

V. VARIOUS BOUNDARY CONDITIONS

As mentioned in the Introduction, the evolution of the
magnetic field near the electrodes requires a separate study.
We assume here that the magnetic field penetrates along
the electrodes, as suggested by various models. As bound-
ary conditions, we specify the magnetic field at all the
plasma boundaries. Moreover, we assume that the field
penetration along the electrodes is very fast, and therefore,
for simplicity, we take the value of the magnetic field at the
electrodes to be the product of two functions; one that is
only time dependent and one that is only coordinate de-
pendent.

We examine the evolution of the magnetic field due to
various time behaviors of the magnetic field at the bound-
aries. The magnetic field at the boundaries is assumed to be
b=>b,(t) at the generator side, b=0 at the load side,
b=b,(t)(1—-2) at the outer electrode, and
b=>5,(t)(1—2z7?) at the inner electrode.

We also assume that the plasma is initially unmagne-
tized. We define #(z,) for positive polarity to be

h(zg)=1—z', 2>},
h(zg)=1-22, 2z<},

while for negative polarity, it is defined as
h(zg) =1—z!, z5<},
h(zg)=1—z3 zp>13

For all cases, the method used to find the magnetic
field evolution is the same. At each point in the plasma
region (7,z), the value of £=£(rz)=n (rz)Pis found, and
then, using Eq. (13b), z,(£) is also calculated. For a time
1, it is checked whether the wave has reached this point.
The value of the magnetic field is calculated by finding the
value that the field had at the boundary at a time Az(7,2,¢)
(to be found), knowing that the field has propagated for a
time t— At(r,z,t), according to Eq. (13a). The equation for
At(r,z,t) becomes
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)1/(a+2)
, (14)

(a+2)

[t—At(r,z,t) b [At(r,z,t) ] [h(25)] =(z—2zp).

(15)

On the other hand, the velocity of propagation of the wave
front, where a discontinuity exists, is found by equating the
propagation of the discontinuity due to a magnetic field at
time At, at the boundary [Eq. (8)] and the propagation of
a continuous wave with the same magnetic field [Eq.
(13a)]. The equation for At/ is

1 t
[1—A1p(D)]b[Ary(1)] =5 fo b[Aty(t)1dt'. (16)

The left-hand side of the equation results from the contin-
uous propagation equation [Eq. (13a)]; the right-hand side
results from the discontinuity propagation equation [Eq.
(8]

We now analyze several cases. Case A is of a magnetic
field that is switched at the plasma boundaries as a step
function. The evolution of the magnetic field in the plasma
is calculated. Case B is the steady-state magnetic field dis-
tribution in the plasma for the magnetic field that was
specified on the boundaries in case A. Case C is the mag-
netic field that rises linearly in time at the plasma bound-
aries. Case D is of a nonmonotonic behavior of the mag-
netic field. To enable analytical calculation the magnetic
field is assumed first to rise linearly in time and then to
decrease linearly in time. The time evolutions of the mag-
netic field at the boundaries in the various cases is shown in
Fig. 2.

A. Magnetic field switched on as a step function in
time

In this case b,(t) = = ®(z), where @ is a step function.
From here on the upper sign refers to negative polarity
while the lower sign refers to positive polarity. The solu-
tion for the magnetic field in this case is

b (z,,8) = =0 (1) [A(2) ]O[ £ (5(1,8) —2)]. (17)
The wave front 27(£,§) propagates as

h(zy) (a+2)¢

Z;(t’§)= 25

+2o- (18)
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case A,B

FIG. 2. Illustration of the time behaviors of the magnetic field at the
boundaries for cases A-D.

The radial lIocation of the front f} is found from the rela-
tion £=n(r;,2%) (r"f)z. Here Aty=1/2.

B. Steady state

We assume that the field is switched on at the bound-
aries as a stepfunction in time (as in the previous case).
After enough time the field in the plasma reaches a steady
state. The discontinuities of the magnetic field correspond
to infinite current densities and infinite electric fields. Fi-
nite resistivity should resolve most of the singularities.

C. Magnetic field linearly rising in time

In this case b,(#) = +1/t;. Let us define A7T=At/t, and
=1/t . According to Eq. (15), the magnetic field is

b (2,4,€) = + ATh(20) O] £ (ZH(1,£) —2)], (19)

where AF=(F4 F?—4W)/2, and W=(z—2)E/ (a
+2)t[+h(2y)] (note that W>0).

The velocity of propagation of the froni is found from
Eq. (16). It is easy to see that the solution for this equation
is

AT(D =37

b5 =3 £ h(20)], (20)

(a+2)+z
£ o

D =% Tl +h(z)]

Again, 7 is found from the requirement 7 ( ) (r})2=§.

Figure 3 shows the n72 contour lines of the density
distribution that is used in all the numerical examples that
follow. The density parameters are chosen to be a=—1.5
and €=0.3.

Figure 4 shows the distribution of the magnetic field,
as found analytically by the method described above, at
time #=0.2, when the polarity is negative. Figure 4(a)
shows the distribution when the magnetic field at the
plasma boundaries is applied as a step function (case A),
while Fig. 4(b) shows the distribution when the magnetic
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FIG. 3. The n contour lines of the density profile assumed in all the
numerical examples that follow (6=0.3 and = —1.5)

field at the boundaries rises linearly in time (case C), with
a rise time #=2. The maximum value of b in both cases is
the same.

D. Magnetic field linearly decaying in time afier a
linear rise time

In this section we study the magnetic field evolution in
a plasma in which the magnetic field at the boundaries is
nonmonotonic in time, first it rises, and then decreases. We
show that during the decrease of the current interesting
physical processes occur, such as reversal of the current
direction in certain regions in the plasma, followed by ion
deceleration in those regions. Although this time at which
the current decreases is of less interest for the operation of
the POS, understanding of the processes that occur at this
time could help the understanding of the processes that
occur during the previous time during which the current
rises. In fact, in a recent POS experiment at the Weizmann
Institute there were indications that ions decelerate during
the current decrease.’* Our calculations propose that the
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10044
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FIG. 4. Analytically calculated magnetic field evolution in 2 nonuniform
plasma (the density profile shown in Fig. 3), for negative polarity at
t=0.2. The magnetic field at the boundaries (¢;=c,=1) is (a) a step
function in time (case A); and (b) rising linearly in time (case C, ty=2).
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magnetic field penetration could cause such deceleration.
A more quantitative comparison with the experiment will
be made in the future, when the measurements are com-
pleted.
We choose a time behavior of the magnetic field at the
plasma boundaries that only approximates a realistic be-
havior, but enables us an analytic calculation. We assume
that the field rises linearly and reaches a maximum value at
t=1y, after which it decreases linearly. The evolution of the
magnetic field at the electrodes is therefore assumed to be

b(H=x[1—-p(F-1)], F>1.

We refer only to times at which the magnetic field is pos-
itive.
For 1<t<3%, in the region where A7 (as calculated in
the case of linearly rising magnetic field) is larger than 1,
or for £>%in all the plasma, the linearly decreasing b at the
electrodes determines the evolution of the magnetic field.
Following the same steps as in the previous case (C), we

b (N=x7 T<], obtain

Ve 1474 J(/p+ 140 = (/) [ - W+T1+p) ] 1)

A 5

field decreases (case D). As is shown in the next section, in
such regions the force that is exerted on the ions is toward
the generator. Ions that are being pushed toward the load
would slow down and might even be pushed toward the

Note that case C is recovered when pt= — 1. The magnetic
field is

b (2,58) = £ h(z0) [1 —p (AP —1)10] + (ZHFE) —2)].

(22) generator.

For 7> % the solution for At ris no longer At}. The equation
for the front propagation becomes

[F— AT 1[I —p(ATH(D) — 1]
0 n—pparey—
£/3 [1—-u[ATH(T) —1]1d7. (23)

VI. ION MOTION

In our model we have assumed that the plasma push-
ing is negligible. In this section we calculate the ion veloc-
ities and displacements that result from the field evolution
calculated in our model. If these velocities and displace-
ments are indeed negligible, it justifies a posteriori our ini-
tial assumption.

We assume that the ions are accelerated due to an
electric field E= (JXB)/enc, and that their displacement

2
The solution for A7*(¢) is given in the Appendix. The wave

front propagates as
(a+2)

g 1

. 4
t> 3 (24)

Figures 5 and 6 show the magnetic field evolution when the
polarity is positive. Figure 5 shows the magnetic field dis-
tribution when a steady state is reached (case B). The
arrows show the direction of the electron flow. Figures
6(a) and 6(b) show the magnetic field distribution at
t=0.666 and at t=3-0.666, respectively, when the mag-
netic field is applied at the boundaries as a step function. .
Figures 6(c) and 6(d) show the distributions for the lin-

early increasing in time magnetic field (case C) for 7=1,

and for the nonmonotonic-in-time magnetic field at the

boundaries (case D) for 7=% where 1,=0.666, respec-

tively. These times are the same times as in Figs. 6(a) and

6(b) (at 7=1, case C and case D are identical). As ex-

pected, the fastest penetration is in the step function case 1.00 I B ey

(A). We also see that the gradient of the magnetic field is 000 025 050 075

nonmonotonic in space. Therefore, there also exist regions z

where the direction of the electron flow is from the anode

to the cathode. Such regions can appear because of the nr?

configuration (case C), but also when the applied magnetic

() = [T~ AZHD 1 [1~ pAFHD) ~ 1)]A (20)
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FIG. 5. The steady-state magnetic field distribution in a nonuniform
plasma (the density profile is shown in Fig. 3) for positive polarity (case

B, ¢;,=3; and ¢;=1).
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FIG. 6. Magnetic field evolution in a nonuniform plasma (the density profile s}hown in Fig. 3) for positive polarity. The magnetic field at the boundaries
(=1, ¢,=3) is (a) a step function in time (case A) at t=0,666, (b) at r= 5-0.666, (¢} is rising linearly in time (case C, 1,=0.666) at =0.666, and

(d) nonmonotonic in time (case D, #,=0.666, p=1) at t= 5-0.666.

is negligible. In terms of dimensionless variables we obtain

2., Ame’ringb b

@ T, (29

d*.,  4mrelranybadb
nr’

& oM, (26)
where z;,, and 7,,, are the ion axial and radial displace-
ments and M, is the ion mass. The velocities acquired by
the ions result from two kinds of electric fields. The first
kind of electric field is a slowly varying weak electric field
that exists behind the front, where the current density is
low. This electric field exerts force on the ions for a long
period of time. The second kind of eleciric field is the

2848 Phys. Fluids B, Vol. 5, No. 8, August 1993

strong electric field at the shock front. This electric field
exeris a strong force on the ions, but for a short period of
time only, because of the fast propagation.

The ion velocity and displacement due to the weak
electric field are found by solving numerically Eqgs. (27)
and (28). The right-hand sides of the equations are calcu-
lated using the values of the magnetic field that were found
in the previous sections. In all the calculations we assume
that the ion motions are small, so that we approximate the
electric fields that the ions experience by the electric fields
in their initial positions.

We cannot calculate the ion velocities and displace-
ments that result from the electric fields inside the shock by
solving Eqs. (27) and (28), because in our solutions the
shocks appear as discontinuities of the magnetic field. The
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FIG. 7. lon velocities and displacements that result from the magnetic field evolution shown in Fig. 6(a) (case A), at 1=0.666 (7=1). The parameters

are B;=10 kG, ny=10" cm~3, M,= 12M,, (M, is proton mass) a=6 cm, 7,=2.5 cm, 7,=5.0 cm, and T'=20 nsec. (a) Vionrs (B) #ign, (€) Vign,, and
(d) 2z, . Velocities are in units of 107 cm/sec, 7, is in units of 4X 102, and z,, is in units of 2X107% a.

velocities acquired inside the shock can be estimated by
assuming that the time & that an ion spends inside the
shock is so short that the shock velocity ¥, can be consid-
ered constant. In the rest frame of the shock the ion climbs
an electrostatic potential B*/8mne, and acquires the veloc-
ity Vion s= Va/2V,, where Vy=(B*/4mnM;)'?, and it is
assumed that V', <V,. The quantities here are in cgs units.
The ion displacement, during the time that an ion spends
inside the shock, is of the order of Vion, f6/3, which is
negligible.

In Figs. 7-9 the ion motion that results from the mag-
netic field evolution in a positive polarity POS is shown.
The density profile is shown in Fig. 3 and the calculations
are made for the various cases presented in Fig. 6. We
chose positive polarity for the numerical example, since in
this case the field penetration is smaller than in the nega-

2849 Phys. Fluids B, Vol. 5, No. 8, August 1993

tive polarity, and therefore the ion motion is expected to be
larger. The main observation is that the plasma ions
(which are assumed singly charged carbon ions) acquire
only small velocities during the 20 or 30 nsec of field evo-
lution, and that their displacements are small relative to
the plasma dimensions. This result justifies a posteriori our
assumption that the ion motion is negligible.

The ion motion is not negligible in certain regions in
the plasma, where large quasistationary gradients of the
magnetic field may cause large plasma pushing. Examples
are the ion radial displacements at z=0.5 near the anode
[Figs. 7(b) and 8(b)], and the ion axial displacement at
z=0 near the cathode [Fig. 8(c)]. Our model is not valid in
these regions.

The figures show the ion motion at 20 and 30 nsec.
Later, the magnetic field evolution is slower and the ion
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FIG. 8. Ion velocities and displacements that result from the magnetic field evolution shown in Fig. 6{c) (case C), at #=0.666 (7=1). Here B;=10kG,
ne=10"cm ™3, M,=12M » (M, is proton mass), a=6 cm, r;=2.5 em, r,=5.0 cm, and T =20 nsec. The units of velocity and displacement are as in Fig.

7. (a) Vion,n (b) #n» (c) Vion,z) and (d) zjg,.

motion becomes more significant. Our calculations show
therefore that even in a positive polarity POS, there is a
substantial period of time (a few tens of nsec), in which the
dominant process is the field penetration.

We also observe that there are regions in the plasma
where the ion velocities decrease during the decrease of the
magnetic field at the boundaries. Figure 8(a) shows the ion
radial velocities at T'==20 nsec, the time at which the field
at the boundaries reaches its maximum. Figure 9(b) shows
the radial velocities at 7' =230 nsec, when the magnetic field
at the boundaries decreases. It is seen in the figures that the
velocities near the anode are smaller at the later time. This
is a result of the nonmonotonic-in-space magnetic field [see
Fig. 6(d)], and of the electric fields that point toward the
anode. The ions are decelerated in those regions.

2850 Phys. Fluids B, Vol. 5, No. 8, August 1893

VH. CONCLUSIONS

In this paper we studied the magnetic field penetration
into a plasma in the POS configuration. We have shown
that while in a cylindrical plasma of a uniform density the
magnetic field penetrates in negative polarity only, in a
cylindrical plasma of a realistic nonuniform density the
penetration occurs in positive polarity as well, as long as
there is magnetic field penetration along the electrodes.
This is because when the density is nonuniform, the n??
contour lines, along which the magnetic field propagates,
intersect the electrodes. In the numerical examples, we
have shown that even in a positive polarity POS, there is a
substantial period of time (a few tens of nsec for the pa-
rameters that we chose), during which the dominant pro-
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in Fig. 7. The time is 7T'=230 nsec.

cess is the field penetration, and the ion motion is small.
Contrary to the negative polarity, however, in the positive
polarity the magnetic field usually penetrates into the
plasma on the generator side only, and is not expected to
reach the plasma boundary on the load side. Thus, in a
positive polarity POS, after the initial phase of field pene-
tration, a second phase of plasma pushing by the magnetic
field may exist, prior to a power delivery to the load.

Our model is based on several approximations. A more
accurate model that treats the non-neutral sheaths near the
electrodes'” and the mutual effects of field penetration and
electron heating® may modify the results. In addition, as
has been recently demonstrated, ion motion may also in-
duce field penetration.'

APPENDIX: SHOCK FRONT PROPAGATION FOR
CASE D

The solution for the front propagation of case D is as
follows. By differentiating Eq. (23), we obtain

2851 Phys. Fluids B, Vol. 5, No. 8, August 1993

dATHD 1 i4+p—p ATH )
ar Z(ZHA??(?)—M—(IW))'

We exclude the case u =0, for which the last equation has
the solution A#%(7) =7/2+3 (this is the case of a constant-
in-time value of b at the boundary, after a linear rise in
time). Defining

g=Af,+a, wz?+l7, and p=g/w,
where a=—(1+u)/u; 5=—(1+,u)/,u,

we obtain
ap (—p+3) 2p
Yow™ 2p—1

This equation has a special solution, A?‘}’»(?) = 2foru=—1
(recovering case C). Otherwise, it leads to a cubic equation
for p={AFE) —[(1+p)/u]}/F— (14p)/p):

(PP—3ipY) =(y/w)’

From the requirement that A7($)=1, it follows that
y=—(1/4"1) (1 +p) . Defining @= — (y/w)?, we find
that p has only one real root y(7)=S_+S_+ 1 where
S,= Y—a/2+1/#+ Ja*/4—a/4’. Finally, we obtain

1+p

1+u)
u

A?;(?) =y(7) (T—T +
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